The generator matrix 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 1 X X^3+X^2 1 1 1 1 1 1 1 X 0 X X^3+X^2 X X X X X X^3 X X^2 X X^3 X X^2 X X X X 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 X 0 X X^3+X^2 X^2+X 0 X^2+X X^3+X^2 X^3+X X^3 X^3+X^2+X X^2 X^3+X X^3 X^3+X^2+X X^2 X 0 X^2+X X^3+X^2 X^3+X 0 X^2+X X^3+X^2 X^3+X X^2+X X X^3 X^3+X X X^3+X^2+X X^2 X X^3 X^3+X^2+X X^2 X X^2+X X X^3+X X 0 X^3+X^2 X^3 X^2 X^3+X^2+X X X X X^3+X^2+X X X X 0 X^3+X^2 X^3 X^2 0 X^3+X^2 0 X^3+X^2 X^3 X^2 X^3 X^2 X^2+X X^3+X X^2+X X^3+X X^3+X^2+X X X^3+X^2+X X 0 X^3+X^2 0 X^3 X^3+X^2 0 0 X^3 X^3 X^3 0 0 X^3 X^3 X^3 0 0 0 0 X^3 X^3 0 0 X^3 X^3 X^3 X^3 0 0 0 X^3 X^3 X^3 0 X^3 0 0 0 0 X^3 X^3 X^3 0 0 X^3 X^3 X^3 X^3 X^3 X^3 X^3 0 0 0 0 X^3 X^3 0 0 0 0 0 X^3 X^3 0 X^3 0 0 X^3 0 X^3 X^3 0 X^3 0 0 X^3 0 X^3 X^3 0 0 generates a code of length 77 over Z2[X]/(X^4) who´s minimum homogenous weight is 76. Homogenous weight enumerator: w(x)=1x^0+48x^76+160x^77+36x^78+5x^80+4x^86+1x^88+1x^104 The gray image is a linear code over GF(2) with n=616, k=8 and d=304. This code was found by Heurico 1.16 in 0.453 seconds.